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Abstract
Recently, Herbig–Schwarz–Seaton have shown that 3-large representations of a reduc-
tive group G give rise to a large class of symplectic singularities via Hamiltonian
reduction. We show that these singularities are always terminal. We show that they
are Q-factorial if and only if G has finite abelianization. When G is connected and
semi-simple, we show they are actually locally factorial. As a consequence, the sym-
plectic singularities do not admit symplectic resolutions when G is semi-simple. We
end with some open questions.

1 Introduction

Hamiltonian reduction is an extremely powerful technique, in both physics and differ-
ential geometry, for producing rich new symplectic manifolds from a manifold with
Hamiltonian G-action. The same technique also works well in the algebraic setting,
except that the resulting spaces are often singular, and hence cannot be (algebraic)
symplectic manifolds. Thanks to Beauville [2], there is an effective generalization of
algebraic symplectic manifold to the singular setting, appropriately called “symplec-
tic singularities”. Often, these singularities admit symplectic resolutions, i.e., Poisson
resolutions of singularities by symplectic varieties. Such resolutions have become very
interesting frommultiple points of view: representation theory (of quantizations), 3-D
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physical mirror symmetry, algebraic and symplectic geometry, and so on. Note that,
in order to admit a symplectic resolution, a variety must be a symplectic singularity,
but the converse is not true.

Thus, it is natural to ask if algebraic Hamiltonian reduction gives rise to spaces
with symplectic singularities. In general, examples make it clear that the answer is
sometimes yes, sometimes no. For instance, examples show that even beginning with
a symplectic linear representation of G, the resulting Hamiltonian reduction can be
non-reduced or reducible; even if reduced and irreducible, it is often not normal. On the
other hand many interesting classes of examples, such as Nakajima’s quiver varieties,
give rise to symplectic singularities [3].

Recently, Herbig–Schwarz–Seaton [10] have shown that linear G-representations
V satisfying amild technical condition (the 3-large representations) give rise toHamil-
tonian reductions (of T ∗V by G) which have symplectic singularities. This leads to
the natural question:

Do these symplectic singularities admit symplectic resolutions?

We prove two key results (Theorem 1.2 and Corollary 1.3) in this direction.
First, we introduce some notation. Let G be a reductive (possibly disconnected)

algebraic group over C and V a finite dimensional G-representation. For each integer
k ≥ 0, one has the notion of a k-large representation, which roughly measures the
codimension of points where certain undesirable behaviors occur (the orbit is not
closed, the stabilizer is not minimal, or the stabilizer has a given positive dimension).
We recall it precisely in Definition 2.1 below. In particular, as explained in [10], ifG is
connected and simple then all but finitely many G-representations V , with VG = {0},
are 3-large; for a more general statement with G connected and semi-simple see [10,
Theorem 3.6].

The representation W := V × V ∗ has a canonical G-invariant symplectic 2-form
ω such that the action of G on W is Hamiltonian, with moment map μ : W → g∗
given by

μ(v, λ)(x) = λ(x · v), ∀ (v, λ) ∈ V × V ∗, x ∈ g.

The associated (algebraic) Hamiltonian reduction is the GIT quotient μ−1(0)//G. We
recall from [2, Definition 1.1] that a variety X is said to be a symplectic singularity
if it is normal, its smooth locus has a symplectic 2-form ω, and for any resolution of
singularities ρ : Y → X , the rational 2-form ρ∗ω is regular. Moreover, ρ is said to
be a symplectic resolution if the 2-form ρ∗ω is also non-degenerate. In particular, this
makes Y an algebraic symplectic manifold. It is shown in [10, Theorem 1.1] that:

Theorem 1.1 If V is 3-large then μ−1(0)//G is a symplectic singularity.

Proof The definition of Hamiltonian reduction used in [10] is different from the one
given above. However, it follows from [10, Lemma 2.8] that the two definitions coin-
cide if V is 2-large. Therefore the result follows from [10, Theorem 1.1]. ��

Recall that the abelianization ofG isGab := G/[G,G]. The groupG is called per-
fect if Gab = {1}, i.e., G = [G,G]. We will show (Corollary 2.8 and Proposition 2.9):
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Factoriality of Hamiltonian reductions

Theorem 1.2 Let G be a reductive group acting on a 3-large representation V and
X := μ−1(0)//G the associated Hamiltonian reduction.

(a) X has terminal singularities.
(b) X is Q-factorial if and only if Gab is finite.
(c) If G is perfect then X is locally factorial.

In particular, if G is connected and semi-simple then X is locally factorial. The
theorem provides a method for producing examples of a symplectic singularity that is
not Q-factorial, but whose quotient by Z2 is Q-factorial; see Example 2.12.

Corollary 1.3 Let V be a 3-large representation of G. If Gab is finite and G acts
non-trivially on V , then the symplectic singularity X does not admit a symplectic
resolution.

Note that, if the connected component G◦ of the identity is semi-simple, Gab is a
quotient of π0(G), which is finite. Also, when dimG > 0, the assumption that G acts
non-trivially on V is unnecessary, as it follows from the 3-large property.

Proof of Corollary 1.3 As we show in Lemma 2.10 below, the fact that V is 3-large
and G acts non-trivially on V forces X to be singular. The fact that X is Q-factorial
by Theorem 1.2, together with van der Waerden purity, implies that if ρ : Y → X
is a symplectic resolution then the exceptional locus on Y is a divisor. But since
X has terminal singularities, any crepant resolution must have exceptional locus of
codimension at least two. This contradicts the fact that every symplectic resolution is
crepant. ��

Theorem 1.2, combined with Namikawa’s result [15, Theorem 5.5], implies that:

Corollary 1.4 If Gab is finite, then all Poisson deformations of the reduction X are
locally trivial as ordinary deformations. In particular, the singularities cannot change
under Poisson deformation.

In Sect. 2.4, we explain how the above results generalize, for finite groups, to the
case when V is not linear. One simple consequence is that, by considering the finite
quotient (μ−1//G◦)/(G/G◦), if G◦ is semisimple then one can reduce Theorem 1.2b
to the connected case (although we do not need this).

Finally, in Sect. 3, we present some open questions. For example, for dimG > 0,
can one generalize the results above to the case where V is not linear? What happens
if one replaces the affine quotient by a GIT quotient, or when one takes Hamiltonian
reduction at a nonzero character of g?

2 Hamiltonian reductions

2.1 k-large representations

We assume throughout this section that G is a reductive (possibly disconnected) alge-
braic group over C. Let N be an irreducible affine G-variety. Let k = min{dimGx :
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G · x is closed} and let l be the minimum number of connected components of Gx as
x ranges over all points of N with G · x closed and dimGx = k. Write N ′ for the set
of all points in N such that the number of connected components of Gx is l, the orbit
G · x is closed, and dimGx = k. The orbits in N ′ are the principal orbits. Following
G. Schwarz, when k = 0 we say that V has finite principal isotropy groups (FPIG).
If the categorical quotient of N is ξ : N → X := N//G, then Xpri := ξ(N ′) and
Npri := ξ−1(Xpri). Since X is irreducible, Xpri is open and dense in X , and it is a
consequence of Luna’s slice theorem that the isotropy groups of all points in N ′ are
conjugate; see [17, §1.4]. These groups are called principal isotropy groups.

Let us recall the definition of k-large representations (restated slightly from [10,
§2.1]):

Definition 2.1 A representation V of G is k-large if:

• V has FPIG;
• codim V \V ′ ≥ k (“k-principal”)
• codim V(r) ≥ r + k for 1 ≤ r ≤ dimG, where V(r) := {v ∈ V | dimGv = r}
(“k-modular”).

Observe that if V has FPIG, then Vpri = V ′ consists precisely of the principal
orbits. We will need the following result.

Lemma 2.2 If V is k-large for k ≥ 2 then V × V ∗ is 2k-large. Moreover, V ′ × V ∗ ⊆
(V × V ∗)′; similarly V × (V ∗)′ ⊆ (V × V ∗)′.
Proof Note that, for v ∈ V and f ∈ V ∗, we have dimG(v, f ) ≤ min{dimGv, dimG f }.
Thus the k-modularity of V implies 2k-modularity of V × V ∗ (in fact, (2k + 1)-
modularity). To prove the 2k-principal property and the FPIG condition, it suffices to
prove the final assertion, which we do in the remainder of the proof. (This also shows
that we can replace the primes by subscripts “pri”.)

Since V is k-large with k ≥ 2, it follows from [17, Corollary 7.7] that the principal
isotropy groups Gv, v ∈ Vpri are all equal to the kernel K of the action of G on V .

Since K is also the kernel of the action on V × V ∗, we have K < G(v, f ) for all
v ∈ V , f ∈ V ∗. On the other hand, if v ∈ V ′, then K > G(v, f ) for all f ∈ V ∗. So
K = G(v, f ) for all v ∈ V ′, f ∈ V .

We claim that all orbits in V ′ × V ∗ are closed. More generally, let W be any
representation of G and w ∈ W . Then G · (v,w) has dimension G, as G · v does. If
G · (v,w) is not closed, then its boundary contains an orbit of the form G · (v,w′), as
G · v itself is closed. Being on the boundary, the orbit has dimension strictly less than
dimG. This contradicts the previous statement. The claim follows.

Thus the kernel K is also the principal isotropy group for all points (v, f ) ∈
(V × V ∗)′, which includes V ′ × V ∗, and similarly also V × (V ∗)′. This proves the
final assertion, and hence the lemma. ��

2.2 Divisors

Recall that if D1 and D2 are Weil divisors on a normal variety X thenO(Di ) denotes
the corresponding reflexive rank one subsheaf ofK (X) andO(D1+D2) = (O(D1)⊗
O(D2))

∨∨. Set O(D)(n) := O(nD).
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Lemma 2.3 Let X be a normal irreducible variety and x ∈ X. The following are
equivalent:

(i) The local ring OX ,x has torsion class group Cl(OX ,x ).
(ii) For every line bundle M0 on Xsm, there exists an open subset U containing both

x and Xsm, and n ≥ 1, such that M⊗n
0 extends to a line bundle M on U.

Proof Recall thatOX ,x is a unique factorization domain if and only if every height one
prime is principal. Geometrically, this means that for every hypersurface C of X , the
sheaf of ideals IC is free at x . Since X is normal, Xsm has complement of codimension
at least 2 in X .

(i) implies (ii). We denote by the same symbol M0 its push-forward to X . Thus, M0

is a reflexive rank one sheaf. There exists some n ≥ 1 such that M (n)
0 has trivial

image in Cl(OX ,x ). Thus, M := M (n)
0 is locally free in a neighborhood of x and

M |Xsm = M⊗n
0 .

(ii) implies (i). Let E ∈ Cl(OX ,x ). ByNagata’sTheorem,we can choose aWeil divisor
D on X whose image in Cl(OX ,x ) equals E . Let O(D) be the corresponding
reflexive rank one sheaf. We wish to show thatO(D)(n) is free in a neighborhood
of x for some n ≥ 1. Let M be the extension of O(D)|⊗n

Xsm
to U . The line bundle

M corresponds to a Cartier divisor C on U ; M = OU (C). Then,

(O(D)|Xsm )⊗n = OXsm (C ∩ Xsm),

and the divisors nD|Xsm and C |Xsm are linearly equivalent. Since X is normal, we
have nD ∼ C , implying that nD is Cartier. Thus, nE = 0. ��

The following is a variant of [3, Theorem 6.7], itself based on a result of Drezet,
[7, Théorème A].

Theorem 2.4 Let N be an affine locally factorial normal irreducible G-variety with
good quotient ξ : N → X := N//G. Assume that:

(a) N has FPIG,
(b) the complement to Npri in N has codimension at least two; and
(c) the complement to ξ−1(Xsm) in N has codimension at least two.

Let x ∈ X and y ∈ ξ−1(x) such that G · y is closed in N. The following are equivalent:

(i) The local ring OX ,x has torsion class group Cl(OX ,x ).
(ii) For every line bundle M0 on Xsm, there exists an open subset U containing both

x and Xsm, and n ≥ 1, such that M⊗n
0 extends to a line bundle M on U.

(iii) For every G-equivariant line bundle L on N, the action of the stabilizer Gy on
every fiber L y factors through a finite group.

Proof Since N is normal, so too is X . Therefore the fact that (i) is equivalent to (ii)
follows from Lemma 2.3.

The set Npri is the pre-image under ξ of Xpri. The fibers of ξ : N → X have
dimension G over the principal locus, hence have dimension ≥ dimG everywhere.
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Therefore, the fact that the complement to Npri in N has codimension at least two
implies that the complement to Xpri in X has codimension at least two as well. Let
Xs = Xpri∩ Xsm, an open set with complement of codimension at least two. Let Ns =
ξ−1(Xs). Our assumptions imply that the complement to Ns in N has codimension at
least two as well.

(ii) implies (iii). Suppose that L is a G-equivariant line bundle on N . Since N has
FPIG, all stabilizers Gy for y ∈ Npri are conjugate. In particular, their orders are the
same. Thus, there exists some m for which the stabilizers all act trivially on the fibers
of L⊗m |Ns . By descent [7, Theorem 1.1], the line bundle (L⊗m)|Ns descends to a line
bundle M0 on Xs . This line bundle extends to Xsm since Xsm\Xs has codimension at
least two, and Xsm is smooth (hence locally factorial). By (ii), there is an extension M
of M⊗n

0 to U . Then the G-equivariant line bundle ξ∗M agrees with L⊗nm on Ns . By
normality, this implies that ξ∗M = L⊗mn on ξ−1(U ). In particular, since y ∈ ξ−1(U ),
the stabilizer of y acts trivially on L⊗mn

y .
(iii) implies (ii). Let M0 be a line bundle on Xs . By [3, Lemma 6.6], the line bundle

ξ∗M0 extends to a G-equivariant line bundle L on N . Let y ∈ N . Then, Gy acts
trivially on L⊗n

y for some n ≥ 1 (we can take n to be the size of the finite quotient
through which Gy acts). By [3, Lemma 6.8] there is an affine open neighborhood U
of x such that Gy′ acts trivially on L⊗n

y′ for all y′ ∈ ξ−1(U ) such that G · y′ is closed
in N . We may assume without loss of generality that Xs ⊂ U . Then, by descent [7,
Theorem 1.1], there exists a line bundle M onU such that ξ∗M � L⊗n . In particular,
M extends M⊗n

0 . ��
Corollary 2.5 Assume that (a)–(c) of Theorem 2.4 hold, and that N admits a C×-
action, commuting with the action of G, contracting all points to a unique fixed point.
If n := |Gab| is finite then for each Weil divisor D on N//G, nD is Cartier.

Proof Let o be the unique fixed point of the C×-action on N . Then Go = G and {o}
is a closed orbit in N . Let L be a G-equivariant line bundle on N , as in the proof of
(iii)⇒(ii) in Theorem 2.4. Our assumptions imply that G = Go acts trivially on the
fiber L⊗n

o . It follows that the class group of the local ringOX ,ξ(o) is n-torsion. By [5],
this implies that for eachWeil divisor D in a neighborhood of ξ(o) in X , nD is Cartier.
Using the contracting C∗ action on X , this must hold globally. ��
Remark 2.6 In Theorem 2.4 and Corollary 2.5, it actually suffices to allow N to be Q-
factorial: it need not be locally factorial. In Corollary 2.5, the revised statement should
be that, if mWeil(N ) ⊆ Cartier(N ), then m|Gab|Weil(N//G) ⊆ Cartier(N//G). This
only affects the argument of (iii)⇒(ii) of Theorem 2.4 by replacing ξ∗M0 there by
(ξ∗M0)

⊗m .

In particular, if G is perfect in Corollary 2.5, then N//G is locally factorial. This
applies for instance when G is connected semi-simple.

2.3 Proof of Theorem 1.2

We wish to apply the above results to the particular case where N = μ−1(0) ⊂ T ∗V
for some G-representation V and X = N//G. We require a technical lemma:
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Lemma 2.7 If V is 2-large then N\Npri has codimension at least 2 in N.

Proof Since V × {0} ⊂ N , Lemma 2.2 implies that N contains principal points of
V × V ∗. Thus, N satisfies FPIG and Npri = (V × V ∗)pri ∩ N . Moreover, Lemma 2.2
implies that it suffices to show that the complement to (Vpri × V ∗) ∩ N in N has
codimension at least two. Explicitly, for each irreducible component Z ⊆ V \Vpri, we
need to find a pair of functions f1, f2 ∈ C[V ], both vanishing on Z , which form a
regular sequence on N .

To find the functions f1, f2, note that Vpri is the preimage of an open dense subset
of V //G, with complement of codimension at least two. Therefore there exist G-
invariant f1, f2 ∈ C[V //G] = C[V ]G , vanishing on Z ⊆ (V \Vpri), which are not
scalar multiples of each other. Since Z is irreducible, we can assume that f1 is an
irreducible element of C[V ]G . After replacing f2 by f2/ gcd( f1, f2), we can also
assume they share no common factors, i.e., they form a regular sequence on V . Then,
it follows from [17, Lemma 9.7] that f1, f2, f A1 , . . . , f A�

form a regular sequence,
where f A1 , . . . , f A�

are the defining equations for N . Thus f1 and f2 also define a
regular sequence on N . ��

For the remainder of this section, we assume that V is a 3-large representation of
G. Let N := μ−1(0) and X := N//G. By [10, Proposition 3.2], this implies that N is
reduced, irreducible, and normal. Since V has FPIG by assumption and V ×{0} ⊂ N ,
N also has FPIG.

Corollary 2.8 The Hamiltonian reduction X is Q-factorial if and only if the abelian-
ization Gab of G is finite. If G is perfect then X is locally factorial.

Proof As noted in [10, Section 3.1], if V is n-large, for n ≥ 2, then it follows from
[1, Proposition 6] and [9, Remark 2.4] that C[N ] is a unique factorization domain. In
particular, N is locally factorial.

The fact that V is 3-large implies by [10, Theorem 3.21] that Xsm = Xpri. Thus,
Npri = ξ−1(Xsm). Hence, Lemma 2.7 implies that assumptions (a)–(c) of Theorem 2.4
hold in this case. Note that X carries a contracting C×-action, with unique fixed point
o. Therefore, by Corollary 2.5, if G has finite abelianization, then X is Q-factorial,
and if it is perfect, then X is locally factorial.

Assume now that Gab is not finite. Then we can choose a surjective character
θ : G → C×. In particular, θn �= 1 for all n ≥ 1. Let L be the G-equivariant
line bundle on N corresponding to the (C[N ],G)-module C[N ] ⊗ θ , where G acts
diagonally. Forgetting the equivariant structure, L is the trivial line bundle. However,
G acts on the fiber L0 as multiplication by θ . In particular, this action does not factor
through any finite group. Thus, we deduce from Theorem 2.4 that Cl(OX ,o) is not
torsion. ��

The following proposition completes the proof of Theorem 1.2.

Proposition 2.9 The variety X has terminal singularities.

Proof Since we have assumed that V is 3-large, [10, Theorem 3.21] says that Xsm =
Xpri. Then it is a consequence of Theorem 4.4 of loc. cit. says that the subvariety
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X\Xsm has codimension at least four in X . Moreover, Corollary 4.5 of loc. cit. says
that X is a symplectic singularity. Therefore, it follows from [14] that X has terminal
singularities. ��

Finally, we note that:

Lemma 2.10 If G acts non-trivially on V then the variety X is singular.

Proof The assumption that G acts non-trivially on V implies that Xpri �= X because
0 /∈ Xpri. Then the claim once again follows from [10, Theorem 3.21], which says that
Xpri = Xsm. ��

The reader can check that Theorem 1.1, Theorem 1.2 and Corollary 1.3 all hold pro-
vided V is 2-large and Xsm = Xpri. The 3-large condition is only required to guarantee,
by [10, Theorem 3.21], that Xsm = Xpri. There exist examples of 2-large represen-
tation that are not 3-large, but for which Xsm = Xpri. In particular, the following is
explained after the proof of Lemma 5.6 of loc. cit.

Lemma 2.11 If the connected component G◦ is a torus and V is 1-large then Xsm =
Xpri.

Example 2.12 The above yields many ways to construct examples where V //G is Q-
factorial but V //G◦ is not. Here is one example: Let G = C× � Z2, where s ∈ Z2
acts on C× by s(t) = t−1. Then [G,G] = C× < G and G/[G,G] ∼= Z2 is finite. Let
V = C2n for n ≥ 2 with coordinates x1, . . . , x2n such that

t · xi = t xi , t · xi+n = t−1xi+n, s · xi = xi+n, s · xi+n = xi for 1 ≤ i ≤ n.

Then V is a n-large representation of G and Lemma 2.11 implies that Xsm = Xpri =
X\{0}. We deduce from Theorem 1.2 that μ−1(0)//G is terminal and Q-factorial.
Moreover, it does not admit any symplectic resolution.

If, instead, one takes G◦ = C× acting on the same representation, then this is once
again 2-large and for Y := μ−1(0)//G◦, we have Ysm = Ypri. However, Theorem 1.2
says that Y is no longer Q-factorial. This gives an example of a symplectic singularity
that is not Q-factorial, but whose quotient by Z2 is Q-factorial.

In the context of nilpotent orbit closures, the above example is well-known1. The
spaceY is easily identifiedwith theminimal nilpotent orbit in sl2n (it is a special case of
[12, Theorem 3.3] and also awell-known quiver variety). It has a symplectic resolution
given by T ∗P(V ) (or by taking the GIT quotient) (see [8, Corollary 3.19]), which
provides another proof that Y is not Q-factorial in this case. Similarly, identifying
C× � Z2 with O(2, C), it follows from [13, Theorem 5.3] that X is isomorphic to
the closure of the nilpotent coadjoint orbitO[22,12n−4] in sp2n , which is also known to
be Q-factorial as it has finite Weil divisor class group; see [8, Proposition 2.9]. We
note that this orbit closure is normal by [13, Theorem 1]. The quotient map Y → X is
also the one studied in [6, Theorem 6.3.(iii)], where it is described as the composition
Y ↪→ sl2n � sp2n = sl

Z2
2n ⊃ X .

1 We thank the referee for bringing this to our attention.
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Example 2.13 One can also produce examples where X is not Q-factorial but X/H
is locally factorial for H finite (and both are terminal symplectic singularities). For
this let G be a perfect reductive group, such as (C×)4 � A5 < SL5, and let V be any
2-large representation of G with Xsm = Xpri, e.g., V = ResSL5

G (C5)2 in this case.
Then set X := μ−1(0)//G◦ and H = G/G◦ = π0(G); in this example, H = A5.

2.4 Remarks on disconnected groups

We have chosen to work with disconnected groups partly since, as illustrated by
Example 2.12, it leads to different behavior. In fact, it is also possible to deduce
Theorem 1.2.(b) for groups G whose connected component G◦ of the identity is semi-
simple, directly from the case of G◦. More generally, if Y is an irreducible symplectic
singularity, and H a finite group of symplectic automorphisms of Y , by [2, Proposition
2.4] Y/H is also a symplectic singularity. If Y is additionally terminal, by [14], Y has
singularities in codimension at least four, and Y/H is terminal if and only if it has the
same property. Thus, Y/H is terminal if and only if Y is terminal and the non-free
locus of H on Y has codimension at least four. On the other hand, if Y is Q-factorial,
so is Y/H : see, e.g., [4, Theorem 3.8.1] where Y and Y/H need only be normal,
not symplectic singularities. In our situation, the result follows from the Q-factorial
version of Theorem 2.4 (see Remark 2.6), specializing to finite groups. When Y has
a contracting C×-action which commutes with H , then m · Weil(Y ) ⊆ Cartier(Y )

implies that |Hab| · m · Weil(Y/H) ⊆ Cartier(Y/H) (by Corollary 2.5; the statement
also follows from [4, Theorem 3.8.1]).

Put together, we see that the quotient of a Q-factorial terminal singularity by
a finite group of symplectomorphisms acting freely outside codimension at least
four is also a Q-factorial terminal symplectic singularity. In particular, if such a
quotient is singular (which is true unless Y is smooth and H acts freely), then
there is no symplectic resolution of singularities. This generalizes, and provides
a completely different proof of, the theorem of Verbitsky [18], which considered
the case that Y is a symplectic vector space (note, though, that the nonexis-
tence of symplectic resolutions in the general case follows by formal localization
from Verbitsky’s theorem if H has nontrivial isotropy groups on the smooth locus
of Y ).

Now suppose that V is a 3-large representation of the reductive group G. Then
it is also a 3-large representation of G◦. Set ξ : μ−1(0) → Y := μ−1(0)//G◦ and
H = G/G◦K , for K the kernel of the action G on V . By [17, Corollary 7.7], G/K
acts freely on the principal locus Vpri, hence also on μ−1(0)pri. By the proof of [17,
Theorem 4.4], the complement to the image U := ξ(μ−1(0)pri) has codimension at
least four. Since μ−1(0)pri consists of closed orbits, H acts freely onU . If in addition
G◦ is semi-simple, then by Theorem 1.2, Y is locally factorial. Then we are in the
situation of the previous paragraph, so that X := Y/H is a Q-factorial terminal
symplectic singularity. This verifies Theorem 1.2.(b), for G◦ semi-simple, assuming
only the connected case.

Note that such considerations appear insufficient for deducing Theorem 1.2a in the
case that G◦ need not be semisimple, since as Example 2.12 shows, in general if Y is a
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non-Q-factorial singularity then a finite quotient Y/H can nonetheless be Q-factorial
(even in the case of terminal symplectic singularities).

3 Open questions

The above suggests the following possible generalizations:

Question 3.1 Suppose we replace a 3-large representation V of a reductive group G
by a smooth irreducible affine variety Y such that, at every y ∈ Y such that G · y ⊆ Y
is closed, the representation TyY of Gy is 3-large. For moment map μ : T ∗Y → g∗,
do the analogs of Theorems 1.1 and 1.2 hold?

Next, by Lemma 2.2, if V is a k-large representation of G, then T ∗V is 2k-large.

Question 3.2 Suppose that a reductive groupG acts symplectically on a representation
U of G which is now assumed to be 6-large. For moment map μ : U → g∗, do the
analogues of Theorems 1.1 and 1.2 hold for the reduction μ−1(0)//G?

Of course, we can put the two questions together:

Question 3.3 IfU is a symplectic irreducible affine variety, ormore generally an affine
symplectic singularity, with a Hamiltonian action of a reductive group G, and TuU is
6-large for every u ∈ U with G ·u ⊆ U closed, then do Theorems 1.1 and 1.2 hold for
the Hamiltonian reduction μ−1(0)//G? If U is (singular and) conical with cone point
o ∈ U and C×-action commuting with the action of G, it is enough to ask that ToU
be 6-large.

If G is finite, the above questions all have affirmative answers by Sect. 2.4. If the
questions have affirmative answers in general, then whenever Gab is finite, suitably
large Hamiltonian reductions by G do not admit symplectic resolutions.

Finally,we can ask aboutHamiltonian reductions at nonzero coadjoint orbits. Recall
that, if V is a 2-large representation of a reductive group G, then μ : T ∗V → g∗ is
flat by [17, Proposition 9.4].

Question 3.4 Suppose that V is a 2-large representation of a reductive group G and
μ : T ∗V → g∗ the moment map. Is the reduction μ−1(χ)//G Q-factorial for generic
characters χ : g → C? More generally, if U is a 4-large symplectic representation of
G and μ : U → g∗ the moment map, is μ−1(χ)//G Q-factorial for generic χ? The
same questions apply also in the global setting (following Questions 3.1 and 3.3).

If the answer is affirmative and μ−1(0)//G has symplectic singularities, then a sym-
plectic smoothing exists if and only if it can be obtained by varying the moment map
parameter. Similarly, it is also interesting to replace deformations (varying χ ) as above
by partial resolutions, obtained by replacing the affine quotient above by a GIT quo-
tient corresponding to a character θ : G → C×: are the resulting quotientsQ-factorial
for generic θ? If so, then whenever symplectic resolutions exist, they can be obtained
by varying θ . The 2-large property is important here:
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Factoriality of Hamiltonian reductions

Example 3.5 Let V = (sl2)
2, considered as a representation of G = PGL2. For

μ : T ∗V → g, by [11], the quotient μ−1(0)//G identifies with the locus of square-
zero matrices in sp4, and in particular is a symplectic singularity which is not terminal.
(The singular locus is the codimension-two locus of rank-one matrices in sp4). In
particular, V is not 2-large (in fact, it is 1-large). Note that G is simple, and one cannot
obviously construct any symplectic resolution via GIT. However, as explained in [11,
Remark 4.6], following [16] in the global situation of moduli spaces of sheaves on
K3 surfaces, blowing up the reduced singular locus of X = μ−1(0)//G produces a
symplectic resolution. This is is also realized by the partial Springer resolution with
source the cotangent bundle of the Lagrangian Grassmannian in C4. We note that
generalizations of this construction to quiver varieties are given in [3].
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